skip to main content


Search for: All records

Creators/Authors contains: "Butterfield, Natalie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this work, we constrain the star-forming properties of all possible sites of incipient high-mass star formation in the Milky Way’s Galactic Center. We identify dense structures using the CMZoom 1.3 mm dust continuum catalog of objects with typical radii of ∼0.1 pc, and measure their association with tracers of high-mass star formation. We incorporate compact emission at 8, 21, 24, 25, and 70μm from the Midcourse Space Experiment, Spitzer, Herschel, and SOFIA, cataloged young stellar objects, and water and methanol masers to characterize each source. We find an incipient star formation rate (SFR) for the Central Molecular Zone (CMZ) of ∼0.08Myr−1over the next few 105yr. We calculate upper and lower limits on the CMZ’s incipient SFR of ∼0.45 and ∼0.05Myr−1,respectively, spanning roughly equal to and several times greater than other estimates of CMZ’s recent SFR. Despite substantial uncertainties, our results suggest the incipient SFR in the CMZ may be higher than previously estimated. We find that the prevalence of star formation tracers does not correlate with source volume density, but instead ≳75% of high-mass star formation is found in regions above a column density ratio (NSMA/NHerschel) of ∼1.5. Finally, we highlight the detection ofatoll sources, a reoccurring morphology of cold dust encircling evolved infrared sources, possibly representing Hiiregions in the process of destroying their envelopes.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Abstract We present high-resolution (∼2–3″; ∼0.1 pc) radio observations of the Galactic center cloud M0.10−0.08 using the Very Large Array at K and Ka band (∼25 and 36 GHz). The M0.10−0.08 cloud is located in a complex environment near the Galactic center Radio Arc and the adjacent M0.11−0.11 molecular cloud. From our data, M0.10−0.08 appears to be a compact molecular cloud (∼3 pc) that contains multiple compact molecular cores (5+; <0.4 pc). In this study, we detect a total of 15 molecular transitions in M0.10−0.08 from the following molecules: NH 3 , HC 3 N, CH 3 OH, HC 5 N, CH 3 CN, and OCS. We have identified more than sixty 36 GHz CH 3 OH masers in M0.10−0.08 with brightness temperatures above 400 K and 31 maser candidates with temperatures between 100 and 400 K. We conduct a kinematic analysis of the gas using NH 3 and detect multiple velocity components toward this region of the Galactic center. The bulk of the gas in this region has a velocity of 51.5 km s −1 (M0.10−0.08) with a lower-velocity wing at 37.6 km s −1 . We also detect a relatively faint velocity component at 10.6 km s −1 that we attribute to being an extension of the M0.11−0.11 cloud. Analysis of the gas kinematics, combined with past X-ray fluorescence observations, suggests M0.10−0.08 and M0.11−0.11 are located in the same vicinity of the Galactic center and could be physically interacting. 
    more » « less
  3. ABSTRACT

    We present an overview and data release of the spectral line component of the SMA Large Program, CMZoom. CMZoom observed 12CO (2–1), 13CO (2–1), and C18O (2–1), three transitions of H2CO, several transitions of CH3OH, two transitions of OCS, and single transitions of SiO and SO within gas above a column density of N(H2) ≥ 1023 cm−2 in the Central Molecular Zone (CMZ; inner few hundred pc of the Galaxy). We extract spectra from all compact 1.3 mm CMZoom continuum sources and fit line profiles to the spectra. We use the fit results from the H2CO 3(0, 3)–2(0, 2) transition to determine the source kinematic properties. We find ∼90 per cent of the total mass of CMZoom sources have reliable kinematics. Only four compact continuum sources are formally self-gravitating. The remainder are consistent with being in hydrostatic equilibrium assuming that they are confined by the high external pressure in the CMZ. We find only two convincing proto-stellar outflows, ruling out a previously undetected population of very massive, actively accreting YSOs with strong outflows. Finally, despite having sufficient sensitivity and resolution to detect high-velocity compact clouds (HVCCs), which have been claimed as evidence for intermediate mass black holes interacting with molecular gas clouds, we find no such objects across the large survey area.

     
    more » « less
  4. ABSTRACT

    G0.253+0.016, commonly referred to as ‘the Brick’ and located within the Central Molecular Zone, is one of the densest (≈103–4 cm−3) molecular clouds in the Galaxy to lack signatures of widespread star formation. We set out to constrain the origins of an arc-shaped molecular line emission feature located within the cloud. We determine that the arc, centred on $\lbrace l_{0},b_{0}\rbrace =\lbrace 0{_{.}^{\circ}} 248,\, 0{_{.}^{\circ}} 018\rbrace$, has a radius of 1.3 pc and kinematics indicative of the presence of a shell expanding at $5.2^{+2.7}_{-1.9}$ $\mathrm{\, km\, s}^{-1}$. Extended radio continuum emission fills the arc cavity and recombination line emission peaks at a similar velocity to the arc, implying that the molecular gas and ionized gas are physically related. The inferred Lyman continuum photon rate is NLyC = 1046.0–1047.9 photons s−1, consistent with a star of spectral type B1-O8.5, corresponding to a mass of ≈12–20 M⊙. We explore two scenarios for the origin of the arc: (i) a partial shell swept up by the wind of an interloper high-mass star and (ii) a partial shell swept up by stellar feedback resulting from in situ star formation. We favour the latter scenario, finding reasonable (factor of a few) agreement between its morphology, dynamics, and energetics and those predicted for an expanding bubble driven by the wind from a high-mass star. The immediate implication is that G0.253+0.016 may not be as quiescent as is commonly accepted. We speculate that the cloud may have produced a ≲103 M⊙ star cluster ≳0.4 Myr ago, and demonstrate that the high-extinction and stellar crowding observed towards G0.253+0.016 may help to obscure such a star cluster from detection.

     
    more » « less
  5. null (Ed.)
  6. null (Ed.)